Results 1 to 2 of 2

Thread: Reprojection of a map

  1. #1
      mbartelsm is offline
    Guild Member
    Join Date
    Aug 2010
    Posts
    52

    Link Software for reprojection of a map

    G.Projector is a wonderful tool made by the NASA capable of reprojecting an equirectangular into pretty much every type of projection there is, below is an example of a fractal map and some of the weirdest projections I have seen
    Equirectangular
    Reprojection of a map-untitled-1.jpg

    Gnomonic Cubed Sphere
    Reprojection of a map-gnomonic-cubes-sphere.png

    Gringorten
    Reprojection of a map-gringorten.png

    Bonne
    Reprojection of a map-bonne.png

    It can be downloaded for free from http://www.giss.nasa.gov/tools/gprojector

    Here is a list of available projections:
    Adams Orthembadic: See Quartic Authalic.
    Aitoff: Polyconic, equally spaced parallels.
    Aitoff-Wagner: See Wagner IX.
    Albers Equal-Area Conic: Conic.
    Apian I: See Ortelius Oval.
    Apian II: Pseudocylindric, equally spaced parallels, elliptical meridians.
    Azimuthal Equal-Area: Azimuthal, equal-area
    Azimuthal Equidistant: Azimuthal.
    Babinet: See Mollweide.
    Bacon Globular: Pseudocylindric.
    Baker Dinomic: Fusion; joins Mercator and ??? at 45°.
    Behrmann: See Cylindrical Equal-Area and apply ϕts=30°.
    Boggs Eumorphic: Pseudocylindric, equal-area; Often shown interrupted.
    Bonne: Pseudoconic, equal-area.
    Braun Perspective: Cylindric.
    Braun Stereographic: Cylindric.
    Canters: See Canters Polyconic 1989 f9.
    Canters Polyconic 1989 f9: Polyconic, low-error.
    Canters Pseudocylindric 2002 f5.18: Pseudocylindric, low-error, pole line.
    Canters Pseudocylindric 2002 f5.19: Pseudocylindric, low-error, pole line.
    Canters Pseudocylindric 2002 f5.20: Pseudocylindric, low-error, pole line.
    Canters Pseudocylindric 2002 f5.23: Pseudocylindric, low-error, pointed pole.
    Cordiform: See Bonne and apply ϕ0=90°.
    Craster Parabolic: See Parabolic.
    Cylindrical Equal-Area: Cylindric, equal-area.
    Cylindrical Equidistant: See Equirectangular.
    Denoyer Semi-Elliptical: Pseudocylindric.
    Eckert III: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
    Eckert IV: Pseudocylindric, equal-area, elliptical meridians, pole line.
    Eckert V: Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
    Eckert VI: Pseudocylindric, equal-area, sinusoidal meridians, pole line.
    Eckert-Greifendorff: Polyconic, equal-area.
    Equidistant Conic: Conic, equally spaced parallels.
    Equirectangular: Cylindric, equidistant.
    Érdi-Krausz: Fusion.
    Fahey: Pseudocylindric.
    Foucaut: Pseudocylindric.
    Fournier Globular I: Polyconic.
    Gall Isographic: See Equirectangular and apply ϕts=45°.
    Gall Orthographic: See Cylindrical Equal-Area and apply ϕts=45°.
    Gall Stereographic: Cylindric.
    Gall-Peters: See Cylindrical Equal-Area and apply ϕts=45°.
    Ginsburg VIII: Pseudocylindric.
    Goode Homolosine: Fusion; joins Sinusoidal and Mollweide at 40°44'. Often shown interrupted.
    Gott Equal-Area Elliptical: Equal-Area.
    Gott-Mugnolo Azimuthal: Azimuthal.
    Gnomonic: Azimuthal.
    Gnomonic Cubed Sphere.
    Gringorten: Equal-Area.
    Hammer: Polyconic, equal-area.
    Hammer-Aitoff: See Hammer.
    Hammer-Wagner: See Wagner VII.
    Hill Eucyclic: Polyconic, equal-area. Note: identical to Eckert IV for K=∞.
    Hölzel: Pseudocylindric.
    Homalographic: See Mollweide.
    Homolographic: See Mollweide.
    Kavraisky V: Pseudocylindric, equal-area.
    Kavraisky VI: See Wagner I.
    Kavraisky VII: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
    Lambert Azimuthal Equal-Area: See Azimuthal Equal-Area.
    Lambert Conformal Conic: Conic.
    Lambert Cylindrical Equal-Area: See Cylindrical Equal-Area and apply ϕts=0°.
    Larrivée:
    Maurer SNo. 173: See Hill Eucyclic and apply K=0.
    Mayr: Pseudocylindric, equal-area.
    McBryde P3: Fusion; joins Parabolic and M.T. Flat-Polar Parabolic at 49°20'. Often shown interrupted.
    McBryde Q3: Fusion; joins Quartic Authalic and M.T. Flat-Polar Quartic Authalic at 52°9'. Often shown interrupted
    McBryde S2: Fusion; joins Sinusoidal and Eckert VI at 49°16'. Often shown interrupted
    McBryde S3: Fusion; joins Sinusoidal and ??? at 55°51'. Often shown interrupted.
    McBryde-Thomas Flat-Polar Parabolic: Pseudocylindric, equal-area, parabolic meridians, pole line. Often shown interrupted.
    McBryde-Thomas Flat-Polar Quartic: Pseudocylindric, equal-area, quartic meridians, pole line. Often shown interrupted.
    McBryde-Thomas Flat-Polar Sinusoidal: Pseudocylindric, equal-area, sinusoidal meridians, pole line. Often shown interrupted.
    McBryde-Thomas Sine #1: Pseudocylindric.
    Mercator: Cylindric.
    Miller Cylindric: Cylindric.
    Modified Gall: Pseudocylindric.
    Mollweide: Pseudocylindric, equal-area, elliptical meridians. Often shown interrupted.
    Nell: Pseudocylindric, pole line.
    Nell-Hammer: Pseudocylindric, equal-area, pole line.
    Ortelius Oval: Pseudocylindric, equally spaced parallels, circular meridians, pole line.
    Orthographic: Azimuthal, perspective view.
    Orthophanic: See Robinson.
    Oxford Atlas: See Modified Gall.
    Parabolic: Pseudocylindric, equal-area, parabolic meridians.
    Pavlov: Cylindric.
    Peters: See Cylindrical Equal-Area and apply ϕts=45°.
    Plate Carrée: See Equirectangular and apply ϕts=0°.
    Putniņš P1: Pseudocylindric, equally spaced parallels, elliptical meridians.
    Putniņš P1': See Wagner VI.
    Putniņš P2: Pseudocylindric, elliptical meridians.
    Putniņš P2': See Wagner IV.
    Putniņš P3: Pseudocylindric, equally spaced parallels, parabolic meridians.
    Putniņš P3': Pseudocylindric, equally spaced parallels, parabolic meridians, pole line.
    Putniņš P4: See Parabolic.
    Putniņš P4': Pseudocylindric, equal-area, parabolic meridians, pole line.
    Putniņš P5: Pseudocylindric.
    Putniņš P5': Pseudocylindric, pole line.
    Putniņš P6: Pseudocylindric, hyperbolic meridians.
    Putniņš P6': Pseudocylindric, hyperbolic meridians, pole line.
    Quartic-Authalic: Pseudocylindric.
    Raisz Armadillo: Orthoapsidal.
    Raisz Half Ellipsoidal: Orthoapsidal
    Robinson: Pseudocylindric, pole line.
    Sanson-Flamsteed: See Sinusoidal.
    Sinusoidal: Pseudocylindric, equal-area, sinusoidal meridians. Often shown interrupted.
    Stereographic: Azimuthal.
    Times Atlas: Pseudocylindric.
    Tobler G1: Pseudocylindric, equal-area.
    TsNIIGAiK: See Ginsburg VIII.
    Urmayev Sinusoidal: Pseudocylindric, equal-area, sinusoidal meridians, pole line except for b=1 case. Note: identical to Wagner I if b=0.866; identical to Cylindrical Equal-Area for ϕts=28° if b=0; compressed horizontally from classic Sinusoidal if b=1.
    Van Der Grinten I: Polyconic, circular meridians, parallels.
    Vertical Perspective: Azimuthal, perspective view. Note: identical to Orthographic if P=∞.
    Wagner I: Pseudocylindric, equal-area, sinusoidal meridians, pole line.
    Wagner II: Pseudocylindric, sinusoidal meridians, pole line.
    Wagner III: Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
    Wagner IV: Pseudocylindric, equal-area, elliptical meridians, pole line.
    Wagner V: Pseudocylindric, elliptical meridians, pole line.
    Wagner VI: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
    Wagner VII: Polyconic, equal-area, pole line.
    Wagner VIII: Polyconic, pole line.
    Wagner IX: Polyconic, equally spaced parallels, pole line.
    Werenskiold I: See Putniņš P4'.
    Werenskiold II: See Wagner I.
    Werenskiold III: See Wagner IV.
    Werner II: See Bonne and apply ϕ0=90°.
    Winkel I: Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
    Winkel II: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
    Winkel Tripel: Polyconic, equally spaced parallels, pole line.
    Last edited by mbartelsm; 07-21-2012 at 07:14 PM.

  2. #2
      RobA is offline
    Administrator RobA's Avatar
    Join Date
    Apr 2007
    Location
    Niagara, Canada
    Posts
    5,532

    Default

    Just a caution that I found it fairly limited in terms of the size of map it could handle.

    -Rob A>

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •