Results 1 to 10 of 18

Thread: How To Make Wind and Influence Climate

Hybrid View

Previous Post Previous Post   Next Post Next Post
  1. #1

    Default

    Quote Originally Posted by jbgibson View Post
    Hey, Porklet. I'm no climatologist, nor do I play one on TV. Nonetheless, like you, I'm interested. A few questions that may steer your wind planning & climates: what's your axial tilt? Is it the 23 degrees you refer to as a break point? Does your world have enough orbital eccentricity to accentuate or mute the summer/winter effects from tilt? Are these the only landmasses?

    I have started a tutorial ( I need to apologize to Slipguard every time I mention it til I get it finished :-) ) on figuring wind and ocean currents. Some others here have written up how they figured things - in particular I recall seeing Naeddyr's amazing Ysi Earth II - that's the Featured Map page for it; follow the link to the WIP thread. It is an amazing stream-of-cartography lesson. Note that in the heat of battling climate issues, Naeddr swore off ever doing another such thoroughly rationalized climate map.... don't pay that too much heed.

    A significant issue in figuring rain shadow effects is that with an axial tilt, those nice generalized wind patterns are going to oscillate north-south between summer and winter. So really, the only "reliably shaded" area would be one where both summer and winter general winds go the same way. Or same-ish way... Too, you won't get neat bands, unless you have a cue ball of a planet (or a mostly gaseous one - see Jupiter's and Saturn's banding). Instead, you get general highs and lows, with attendant clockwise and counterclockwise flow (flipping once you cross the equator) (and here one means "heat equator", roughly the latitude at which the sun at noon is straight overhead) (BUT strongly modified N-S by large land and sea masses). Also, any such pattern is the general airflow. There'll be plenty of weather activity that differs from time to time.

    Got a used bookstore nearby? Grab a college climatology / weather textbook. A well-spent five to ten bucks. There's a wealth of info on the web too, but it helps to know the terms to search for. There's NOT many treatments of generalized arbitrary worlds - most understandably are Terra-centric.

    "Most tropical cyclones form on the side of the subtropical ridge closer to the equator, then move poleward past the ridge axis before recurving into the main belt of the Westerlies" ( Wikipedia ) . Here's a map of one of my worlds showing general cyclone tracks.
    Attachment 36923
    That planet has its own wiki (many people's work!) where I have a Cyclone distribution article that might give you ideas. A similar coverage of Earth's cyclones shows graphically the curving effects and where they spawn. You can see they just don't cross the equator.

    So that's Q3. Q2 I'd wait to figure til you work out likely (or just plausible - there ARE no climatology police here :-) ) summer/winter patterns. Q1 - yep, you could get rain dumped on the upwind side of a range, and some of the rainfall running "around the corner" across the resulting dryer area, or maybe through a pass in the range. Remember if there's much of a cleft in a barrier range, the wet air will seep through too, muting the rain shadow effect. Or a continent-spanning river (cf: Nile) could catch rain in a wet area and run across unrelated dry areas.

    Have you read Redrobes' river location tutorial? Ascension put a mini-tutorial in a post in a thread about where to place stuff. njordys put up a nice climate zone / rainfall map pair - you can infer the prevailing winds, but you need a January vs. July pair, which by the way shows what drives the ocean currents. Here's a prettier view - kind of the average of those seasonal prevailing winds. If you're used to thinking in terms of high and low pressures and what they do to weather, this pair are useful. The rules of thumb about what forms over a large-ish landmass or large-ish ocean in which season, will let you guess something like this for your world. Reason I asked if these were the only landmasses is that the behavior over an uninterrupted hemisphere-size ocean would lean more toward the ideal than our "continental high in winter" thought.

    Not complex enough? Well, those are the surface winds. Another big driver in climate & weather is the jet streams, as you can see in many weather maps. They're pretty dynamic, so maybe less use in predicting average patterns. But if you're using your world for anything other than a pretty map, knowing when and where the storms run could be hugely important. this site has jetstream maps down at the bottom - there's more golden info all up and down it too. Such as a clue why some latitudes have much more of wet season / dry season, than what we temperate-zone folks think of as summer and winter. Then once you get all that air and water moving, it transports the very heat that drove the motion in the first place. THe mundane example is the 'abnormal' warmness of the northeast Atlantic thanks to the Gulf Stream. Generalized, that becomes a world map showing where heat gets shoved around.

    Waldronate posted a couple of awesome links that go into more detail about the other factors driving currents, including deep-water ones.

    Yeah, the forum's image-attacher thingamwhoozit sometimes glitches. For me a link is fine, 'stead of a thumbnail.

    That's a decent progression of rain & wind, then currents & climate. Just be willing to iterate it a bit, as for instance the ocean currents influence the temperatures which goes back and affects the rainfall, etc. Or stop the thinking at any point you like and just MAP.... it's all your set of judgements, and the rare person who decides to nitpick your exact climate can feel free to redo it to suit himself :-). Me; I look forward to seeing your process in action, so do please keep us posted.
    So much respond to. Thanks for the feedback. I'll take them in order.

    The axial tilt is identical to Earth's. I wanted to create a believable natural world. So I stole from nature. Everything is proportionally the same but halved. The world is 12,000 miles in diameter around the equator, etc. The 23rd parallel refers to the area furthest from the Equator where there is above average rainfall year round, for the most part. I got my information from this site, http://www.blueplanetbiomes.org/planet.htm, which broke down the different climates of the world. It didn't go into weather patterns, depressions, or even water currents. Except when referring to a specific climate that relied on, for example, westerly winds. In answer to your second question, it is the only known land mass. I want to leave it open, but it is the only land mass in this hemisphere.

    Nice work. I didn't realize the winds moved that way based on High and Low Pressure. I got the wind patterns from the free excerpt from "A Magical Society: Guide to Mapping" by Expeditious Retreat Press. It's simplistic, but it suits my purpose. I had no idea that the wind patterns oscillated between the Winter/Summer. I am going to have to study this plethora of information you have given me. I have downloaded the images you were using in your tutorial post along with the Desert/Rainfall pair you linked to.

    I had previously downloaded Redrobe's tutorial, and I am going to move onto rivers, lakes, and ocean currents following this stage. Actually, it occurs to me that ocean currents are probably integral to this stage. I am going to have to look into that as well.

    Oscillating air currents, high and low pressure areas, and jet streams; dear lord what I have I done?

    I am going to have to take all of this in over the next couple of days. I appreciate all of the links and info; especially your own hurricane charts. Thanks again for the info. Will post soon.
    "I run away, therefore I am." - Monty "the Python" Descartes

  2. #2
    Guild Apprentice Hawksguard's Avatar
    Join Date
    Sep 2009
    Location
    Columbus, Ohio
    Posts
    38

    Default

    Quote Originally Posted by Porklet View Post
    Everything is proportionally the same but halved. The world is 12,000 miles in diameter around the equator, etc.
    Sorry I don't have time to comment on the entirety of your post atm. Loos like JB has some awesome info for you. However, the statement above kind of flashed red when I read it. First off, I'm assuming you meant 12,000 miles in circumference around the equator, not diameter, since you said you were halving things. A planet with 1/2 the circumference of the Earth is going to have about *1/8* the volume of the Earth (and assuming it is proportional, about 1/8 the mass), which would give it physical characteristics much closer to Mars than Earth. If this is a naturally evolved planet, a lot of your breathable gasses aren't going to be gravitationally bound to your planet, and you're going to wind up with something tenuous at best. Of course, you could say that your smaller planet has a mass similar to Earth's, but then, all that extra metallic iron in your planet's mantle is going to wreak havoc with your magnetosphere, turning everyone's brain synapses into a fine paste. Your planet would also rotate somewhat more slowly since it doesn't need to go as far to get that 24 hour day, resulting in much decreased wind patterns, weather, and climate. Also, I'm not sure a lot of Earth climatology models would be comparable with a planet with that much decreased surface area.

    When I was designing my world, I hit a lot of walls as well when trying to keep it habitable and similar to Earth and yet, at the same time, throw some variety in there. I managed to acquire a lot of leeway in making it a world terraformed by a highly advanced culture (with remnants of their terraforming technology still in place and functioning), but every time you tweak something it has the potential of throwing a lot of other things out of balance. For example, by making a planet where life had never evolved naturally on its own, I inadvertently deprived my developing civilizations of the primary fuel source (fossil fuels) that got humans through the industrial revolution. Whoops.

    Check out this list of things needed to have a stable, habitable planet.
    Last edited by Hawksguard; 07-06-2011 at 11:23 PM.

  3. #3

    Default

    Quote Originally Posted by Hawksguard View Post
    Sorry I don't have time to comment on the entirety of your post atm. Loos like JB has some awesome info for you. However, the statement above kind of flashed red when I read it. First off, I'm assuming you meant 12,000 miles in circumference around the equator, not diameter, since you said you were halving things. A planet with 1/2 the circumference of the Earth is going to have about *1/8* the volume of the Earth (and assuming it is proportional, about 1/8 the mass), which would give it physical characteristics much closer to Mars than Earth. If this is a naturally evolved planet, a lot of your breathable gasses aren't going to be gravitationally bound to your planet, and you're going to wind up with something tenuous at best. Of course, you could say that your smaller planet has a mass similar to Earth's, but then, all that extra metallic iron in your planet's mantle is going to wreak havoc with your magnetosphere, turning everyone's brain synapses into a fine paste. Your planet would also rotate somewhat more slowly since it doesn't need to go as far to get that 24 hour day, resulting in much decreased wind patterns, weather, and climate. Also, I'm not sure a lot of Earth climatology models would be comparable with a planet with that much decreased surface area.

    When I was designing my world, I hit a lot of walls as well when trying to keep it habitable and similar to Earth and yet, at the same time, throw some variety in there. I managed to acquire a lot of leeway in making it a world terraformed by a highly advanced culture (with remnants of their terraforming technology still in place and functioning), but every time you tweak something it has the potential of throwing a lot of other things out of balance. For example, by making a planet where life had never evolved naturally on its own, I inadvertently deprived my developing civilizations of the primary fuel source (fossil fuels) that got humans through the industrial revolution. Whoops.

    Check out this list of things needed to have a stable, habitable planet.
    I did mean circumference, but since it won't work as I envisioned I am not opposed to doubling the size. When I started this thing, o so many years ago, it was 1,000 miles by 1,500 miles, and it only included the mainland and few small islands. I've come this far, what's another 3,000 miles? The distance from the equator to either pole is roughly 6,000 miles, correct?

    I am working with a 3,000 x 3,000 pixel map that stretched from 75 degrees N to 15 degrees S (or 90 degrees). It was one mile per pixel, but at 2 miles per pixel the distance from the top of the map to the bottom following the same longitude should be 6,000 miles. Is that right?

    Since I stared recreating this world it has grown and changed a lot. I'm OK with a bit more.

    I am still reading thru the info JB provided, and I'm deciding how far I want to take this. The Summer/Winter wind patterns, upper ocean currents, hurricane activity, rainfall, regional climate, and curious or unusual weather patterns are pretty much the limit. I am looking into the H/L Pressure systems, jet stream, and deep ocean currents. I am redefining the Rain Shadows based on JB's new information. I will post tonight.

    EDIT: It might be childish, but I can't help but chuckle when I read the word panspermia in the article you referenced above. It happened again.
    Last edited by Porklet; 07-07-2011 at 06:30 PM.
    "I run away, therefore I am." - Monty "the Python" Descartes

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •