Results 1 to 10 of 14

Thread: Need help modeling extended vision and colorblindness with GIMP and/or PAINT.net

Hybrid View

Previous Post Previous Post   Next Post Next Post
  1. #1
    Administrator waldronate's Avatar
    Join Date
    Mar 2007
    Location
    The High Desert
    Posts
    3,561

    Default

    A race's sensitivity off the ends of the spectrum should effectively give them more colors to describe. The farther out you go, the more colors you get. If you're truly color-blind then all you get are shades, without even a concept of "color". Either of these has serious implications for cultural systems.

    Here on earth we're very well adapted to the peak of sunlight. The sun's energy peaks at green and that's where our vision is most sensitive. If your star is red and your race has color vision then they will likely have a set of "colors" that humans would see as "red" or be totally insensitive to. Similarly, a race with a bluer star will probably tend to have their colors higher up in the spectrum, probably with an extra color or so in the UV and perhaps be missing a color or two in the red.

    Color vision in humans follows a tri-stimulus model with a panchromatic base element. That is, there are three types of color sensors (called cones), each sensitive to different parts of the spectrum and one type of sensor (rods) that respond to the whole visual spectrum. Some things to consider:
    (1) Color vision is slightly less acute than pure monochromatic vision. This result comes from the fact that cones are slightly larger than rods and from the need to mix cones of multiple types to get vision across the full spectrum range. If you need to add more types of "cones" to get farther out on the vision scale then visual acuity might decrease.
    (2) Color vision needs more light to work. You can see this as light in the room gets lower at dusk. The world goes toward a grayer, grainier version as the world gets darker. Similarly, when you're outside looking at stars you're better off averting your gaze slightly to get the starlight to fall on the more-sensitive rods around the foveola.
    (3) Light sensors are most concentrated at the primary focus of the lens get less concetrated the farther away from the center you get. In humans, the fovea is stuffed with cones, giving good color vision. There are fewer cones as you get farther away from the fovea and proportionally more rods. This means that your peripheral vision is lower acuity in both a spatial sense and in a color sense. The arrangement of light sensors works well at reducing the total amount of information that the brain has to process while still giving good results.
    (4) Color blindness in humans tends to be more a result of defective cones of one or more types rather than the absence of those rods. People with color blindness may have somewhat lower visual acuity than someone with a full complement of vision.
    (5) Visual predators tend to have a much greater visual acuity. In some species this acuity comes about by sacrifice of color vision. In others there are special structures to increase acuity (look at a raptor's eye).

    As an aside, modeling color differences with a graphics program doesn't really "mean much" in absolute terms. For example, I can pull the IR filter off my webcam to get it to see farther into the IR spectrum. What I see on my screen is a strange pink image, not new colors as you would expect for a race that is actually sensitive to those parts fo the spectrum.
    Mapping "new" parts of the spectrum into our "regular" part of the spectrum doesn't do much for me. Consider http://apod.nasa.gov/apod/ap070505.html as an example. It's nice that they can assign X-ray parts of the spectrum to "blue", visible parts to "green", and IR parts to "red" to get a new image that tries to take advantage of your color vision. The result is somewhat pretty but seems to just be a curiosity.

  2. #2

    Post

    Some interesting points here. A few of them I've covered over on CBG (but I'm crossposting your post into that discussion as well). I'm actually seeking to model, or at least describe well, a few different visual experiences. Elves, like bees, see in ultraviolet, but not red, while orkhs see in infrared but not violet - their crossbreeding produced humans (seeing "normally"). For all of them the number of colors is essentially the same, but none of them will have the same visual experience. I suspect that artists trying to create a realistic scene under bright afternoon light will all reproduce roughly the same pigment mixtures - and it would require a lot of comparison to recognize that they were seeing things differently. That is, regardless of how it appears to the individual - a mixture of pigments which matches their perception of the color of grass will result in agreement by artists of all 3 races that it's a reasonable match - even though one is seeing a much more bluish green and another a much more yellowish green. But, overtones from ultraviolet or infrared may skew them - I'm imagining a difference in luminosity, but not real sure here. I haven't started playing yet with vision extending into both hyperspectral bands - adding new colors at each end of the visual spectrum. (and I've got no idea what "Dark Vision" would actually look like. . .)

    Since you mention it, solar color is critical, esp. in cultural development. It's a binary system with one larger red-orange star and a smaller, brighter yellow-white star. The smaller currently is nearly dead center upon the face of the larger, but their orbit around a shared gravitational axis has a slight offset, so over a 40,000 year period the smaller appears to cross the face of the large and then disappears behind it, leaving only the large one visible for about 10,000 (dim, cold) years of the cycle. I'm wondering how much UV the red-orange star would emit - without it the elves are in twilight that whole time - even with it I suspect it's still pretty dim.

    ----------------
    Now playing: Track 1
    via FoxyTunes

  3. #3
    Administrator Redrobes's Avatar
    Join Date
    Dec 2007
    Location
    England
    Posts
    7,201
    Blog Entries
    8

    Post

    The spectrum from stars follows the black-body curves which wikipedia has an entry. The graph within is here tho:
    http://en.wikipedia.org/wiki/Image:Blackbody-lg.png

    and this shows curves where there is a steep left side and a slow falling tail on the right. The point here is that if your star is a little cooler than our sun then you would a similar amount of infra red but the UV would be significantly reduced. Being coarse about it then the top end UV frequency is determined by the star temperature.

    I would think that these new colours would be seen as monochrome or possibly new colours that we cant conceive of. Its like trying to describe red to a colour blind person. How do you do it.

    As an aside, I thought elves had infravision as well.

  4. #4
    Community Leader jfrazierjr's Avatar
    Join Date
    Oct 2007
    Location
    Apex, NC USA
    Posts
    3,057

    Post

    Quote Originally Posted by Redrobes View Post
    I would think that these new colours would be seen as monochrome or possibly new colours that we cant conceive of. Its like trying to describe red to a colour blind person. How do you do it.
    Yea... thats why, even though this is a cool topic, I have not replied since thinking about such things just makes my brain hurt...
    My Finished Maps
    Works in Progress(or abandoned tests)
    My Tutorials:
    Explanation of Layer Masks in GIMP
    How to create ISO Mountains in GIMP/PS using the Smudge tool
    ----------------------------------------------------------
    Unless otherwise stated by me in the post, all work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •